-->

Mengetahui Memori Eksternal Pada Komputer

Memori eksternal adalah suatu media yang digunakan komputer untuk menyimpan data atau program secara permanen atau bersifat non volatile yaitu data atau program akan tetap tersimpan walau listrik dipadamkan. Berdasarkan jenis aksesnya memori eksternal dikelompokkan menjadi dua jenis yaitu :

SASD ( Sequential Access Storage Device)
Suatu penyimpanan yang bekerja dengan cara membaca atau menulis data secara berurutan dari awal hingga akhir. Alat penyimpanan ini lebih lambat cara kerjanya tetapi harganya murah. Contoh: magnetic tape, punched card, punched tape.

DASD (Direct Access Storage Device)
Suatu penyimpanan yang bekerja dengan membaca atau menulis data secara langsung ditempat yang diinginkan. Alat penyimpanan ini lebih cepat cara kerjanya tetapi harganya mahal. Contoh: Magnetik (floppy disk, hard disk), Removeable hard disk (Zip disk, Flash disk), Optical Disk.

Berdasarkan karakteristik bahan pembuatannya, memori eksternal digolongkan menjadi beberapa kelompok sebagai berikut:

Magnetic Tape
Magnetic tape adalah model pertama dari pada secondary memory. Tape ini juga dipakai untuk alat input/output dimana informasi dimasukkan ke CPU dari tape dan informasi diambil dari CPU lalu disimpan pada tape lainnya. Panjang tape pada umumnya 2400 feet, lebarnya 0.5 inch dan tebalnya 2 mm. Data disimpan dalam bentuk kecil yang bermagnet dan tidak tampak pada bahan plastik yang dilapisi ferroksida. Flexible plastiknya disebut mylar sedangkan mekanisme aksesnya adalah tape drive.

Metode Akses Pada Magnetic Tape
Untuk membaca / menulis pada suatu magnetic tape adalah secara sequential. Artinya untuk mendapatkan tempat suatu data maka data yang di depannya harus dilalui lebih dahulu. Maka dapat dikatakan organisasi data pada file di dalam tape dibentuk secara sequential dan metode aksesnya juga sequential.

Cara Kerja Magnetic Tape:
Data direkam secara digit / biner pada media tape sebagai titik-titik magnetisasi pada lapisan ferroksida. Magnetisasi positif menyatakan 1 bit, sedangkan magnetisasi negatif menyatakan 0 bit atau sebaliknya. Data direkam secara EBCDIC dan terbagi menjadi 9 track, 8 track pertama untuk merekam data (data bit) dan 1 track terakhir untuk parity bit. Parity bit adalah bit yang digunakan untuk error checking.

Parity dan Error Control pada Magnetic Tape
Salah satu teknik untuk memeriksa kesalahan data pada magnetic tape adalah dengan teknik parity check. Ada 2 macam parity check, yaitu : 

 Odd Parity (Parity Ganjil)
Jika data direkam dengan menggunakan Odd Parity, maka jumlah 1 bit (yang merepresentasikan suatu karakter) adalah Ganjil. Jika jumlah 1 bitnya sudah ganjil, maka parity bit (yang terletak pada track ke-9) adalah 0 bit tetapi jika jumlah 1 bitnya masih genap, maka parity bitnya adalah 1 bit.

 Even Parity (Parity Genap)
Bila kita merekam data dengan menggunakan even parity, maka jumah 1 bit (yang merepresentasikan suatu karakter) adalah Genap. Jika jumlah 1 bitnya

sudah genap, maka parity bit (yang terletak pada track ke-9) adalah 0 bit tetapi jika jumlah 1 bitnya masih ganjil, maka parity bitnya adalah 1 bit. 

Contoh :
Track 1 : 0 0 0 0 0 0
2 : 1 1 1 1 1 1
3 : 1 1 1 1 1 1
4 : 0 1 0 1 0 1
5 : 1 1 0 1 1 0
6 : 1 1 1 1 0 0
7 : 0 1 1 1 1 0
8 : 0 0 1 1 1 1

Bagaimana isi dari track ke-9, jika untuk merekam data digunakan odd parity dan even parity ?

Jawab :

Odd Parity
Track 9 : 1 1 0 0 0 1

Even Parity
Track 9 : 0 0 1 1 1 0 

Keuntungan Penggunaan Magnetic Tape

·         Panjang record tidak terbatas.
·         Density data tinggi.
·         Volume penyimpanan datanya besar dan harganya murah.
·         Kecepatan transfer data tinggi.
·         Sangat efisiensi bila semua atau kebanyakan record dari sebuah tape file memerlukan pemrosesan seluruhnya

Keterbatasan Magnetic Tape

·         Akses langsung terhadap record lambat
·         Masalah lingkungan
·         Memerlukan penafsiran terhadap mesin
·         Proses harus sequential 


Optical Disk
Optical Disk adalah media penyimpanan data elektronik yang dapat ditulis dan dibaca dengan menggunakan sinar laser bertenaga rendah. Optical disk pertama kali ditemukan pada tahun 1958. Kemudian teknologi ini dipatenkan beberapa tahun kemudian. Perkembangan berikutnya, ditemukan teknologi optical media untuk data video dalm laser disc yang dikeluarkan oleh philips, pada tahun 1978. Pada tahun 1980, Philips dan sony mengembangkan CD (Compact Disk), berlanjut setelah itu, audio compact disc (CD) dikeluarkan sony pada tahun 1983. 

Optical Disk memiliki ciri-ciri sebagai berikut

·         Menggunakan laser untuk menulis dan membaca data.
·         Dapat digunakan untuk menyimpan data yang volumenya sangat besar.
·         Dapat membaca lebih cepat

Jenis-jenis Optical Disk

CD
Compact Disk, Suatu disk yang tidak dapat dihapus yang menyimpan informasi audio yang telah di digitasi. System standar menggunakan disk 12 cm yang dapat merekam lebih dari 60 menit waktu putar tanpa terhenti.

CD-ROM
Compact Disk Read-Only Memori, Disk yang tidak dapat dihapus untuk menyimpan data computer. System standar menggunakan disk 12 cm yang dapat menampung lebih dari 500 Mbyte.

CD-R
Compact Disk Recordables, Merupakan CD untuk pengguna khusus biasanya untuk master CD dan photo CD, Lapisan reflektif terbuat dari emas sehingga berwarna kuning. Kapasitas sama dengan CD lainnya.

CD-RW
Digitak Vidio Rewritables, Merupakan generasi CD yang dapat ditulis berulang kali namun belum popular saat ini karena masih relative mahal.

DVD
Digital Vesatile Disk, Salah satu jenis CD yang memiliki pita data lebih kecil, spiral data yang lebih rapat sehingga kapasitasnya sangat besar bisa mencapai 4,7GB untuk sisi tunggal dan berlapis tunggal laser optis yang digunakan adalah laser merah yang dapat berukuran lebih kecil dari CD biasa kualitas yang dihasilkan juga lebih baik dari CD model lain. 

Cara Kerja Optical Disk
Optical disk dapat membaca data dengan head yang sangat dekat dengan CD. Sehingga informasi data dapat tersimpan lebih rapat. Head CD-ROM memancarkan sinar laser, sinar laser ini merambat melalui sebuah frisma, lalu kembali melalui leser magnetik yang membuat sinar leser menjadi lebih fokus. Sinar leser ini ditembakan ke permukaan CD yang memiliki ribuan pit. Pit-pit ini diterjemahkan menjadi kode biner yang dapat diterima oleh CPU. Jika sinar leser mengenai pit, sinar ini akan dibenarkan tetapi jika tidak leser akan dipantulkan kembali lalu menembus prisma dan memasuki sebuah dioda. Dioda ini membangkitkan pulsa elektik setiap kali menerima sinar leser. Pulsa elektrik tersebuk berupa angka 1 dan 0, dengan kata lain menjadi kode biner.

Teknologi Pada Optical Disk

Phase-change disk
Disk dilapisi oleh bahan yang dapat mengkristal (beku) menjadi crystalline (serpihan-serpihan kristal) atau menjadi amorphous state(bagian yang tak berbentuk). Bagian crytalline ini lebih transparan, karenanya tembakan laser yang mengenainya akan lebih terang melintasi bahan dan memantul dari lapisan pemantul. Drive Phase-change disk ini menggunakan sinar laser dengan kekuatan yang berbeda. sinar laser dengan kekuatan tinggi digunakan melelehkan disknya kedalam amorphous state, sehingga dapat digunakan untuk menulis data lagi. sinar laser dengan kekuatan sedang dipakai untuk menghapus data denga cara melelehkan permukaan disknya dan membekukannya kembali ke dalam keadaan crytalline, sedangakan sinar laser dengan kekuatan lemah digunakan untuk membaca data yang telah disimpan.

Dye-Polimer disk
Dye-polimer merekam data dengan membuat bump(gelombang) disk dilapisi dengan bahan yang dapat enyerap sinar laser. sinar laser ini membakar spot hingga spot ini memuai dan membentuk bump(gelombang). bump ini dapat dihilangakan atau didatarkan kembali dengan cara dipanasi lagi dengan sinar laser. 


Magnetic Disk
Magnetic Disk adalah piringan bundar yang terbuat dari bahan tertentu (logam atau plastik) dengan permukaan dilapisi bahan yang dapat di magnetasi. Mekanisme baca / tulis yang digunakan disebut head yaitu kumparan pengkonduksi (conducting coil) selama operasi pembacaan dan penulisan, head bersifat stationer sedangkan piringan bergerak-gerak di bawahnya biasanya yang menggantung diatas permukaan dan tertahan pada sebuah bantalan udara, kecuali pada flopy disk dimana head disk menyentuh ke permukaan.

Dalam magnetic disk terdapat dua metode layout data pada disk yaitu Constant Angular Velocity dan Multiple Soned Recording. Disk diorganisasi (permukaan dari piringan dibagi) dalam bentuk cincin – cincin konsentris yang disebut track atau garis yang memisahkan atar track. Tiap track dipisahkan oleh gap, fungsi gap adalah untuk mencegah atau mengurangi kesalahan pembacaan atau penulisan yang disebabkan melesetnya head atau karena interferensi medan magnet. Contoh dari magentic disk adalah Harddisk & Floppydisk. 

Cara Kerja Magnetic Disk

Representasi Data dan Pengalamatan
Data pada disk juga di block seperti data pada magnetic tape. Pemanggilan sebuah block adalah banyaknya data yang diakses pada sebuah storage device. Data dari disk dipindahkan ke sebuah buffer pada main storage computer untuk diakses oleh sebuah program. Kemampuan mengakses secara direct pada disk menunjukkan bahwa record tidak selalu diakses secara sequential. Ada 2 teknik dasar untuk pengalamatan data yang disimpan pada disk, yaitu :

*Metode Silinder
Pengalamatan berdasarkan nomor silinder, nomor permukaan dan nomor record. Semua track dari disk pack membentuk suatu silinder. jadi bila suatu disk pack dengan 200 track per-permukaan, maka mempunyai 200 silinder. Bagian nomor permukaan dari pengalamatan record menunjukkan permukaan silinder record yang disimpan. Jika ada 11 piringan, maka nomor permukaannya dari 0 – 19 (1 – 20). Pengalamatan dari nomor record menunjukkan dimana record terletak pada track yang ditunjukkan dengan nomor silinder dan nomor permukaan.

*Metode Sektor
Setiap track dari pack dibagi ke dalam sektor-sektor. Setiap sektor adalah storage area untuk banyaknya karakter yang tetap. Pengalamatan recordnya berdasarkan nomor sektor, nomor track dan nomor permukaan. Nomor sektor yang diberikan oleh disk controller menunjukkan track mana yang akan diakses dan pengalamatan record terletak pada track yang mana. Setiap track pada setiap piringan mempunyai kapasitas penyimpanan yang sama, meskipun diameter tracknya berlainan. Keseragaman kapasitas dicapai dengan penyesuaian density yang tepat dari representasi data untuk setiap ukuran track. Keuntungan lain pendekatan keseragaman kapasitas adalah file dapat ditempatkan pada disk tanpa merubah lokasi nomor sektor (track atau cylinder) pada file. 

Movable-Head Disk Access
Movable-head disk drive mempunyai sebuah read/write head untuk setiap permukaan penyimpanan recordnya. Sistem mekanik yang digunakan oleh kumpulan posisi dari access-arm sedemikian sehingga read / write head dari pengalamatan permukaan menunjuk ke track. Semua access-arm pada device dipindahkan secara serentak tetapi hanya head yang aktif yang akan menunjuk ke permukaan.

Cara Pengaksesan Record yang Disimpan pada Disk Pack
Disk controller merubah kode yang ditunjuk oleh pengalamatan record dan menunjuk track yang mana pada device tempat record tersebut. Access arm dipindahkan, sehingga posisi read / write head terletak pada silinder yang tepat.
Read / write head ini menunjuk ke track yang aktif. Maka disk akan berputar hingga menunjuk record pada lokasi read / write head. Kemudian data akan dibaca dan ditransfer melalui channel yang diminta oleh program dalam komputer. 

ACCESS TIME = SEEK TIME (pemindahan arm ke cylinder)
+ HEAD ACTIVATION TIME (pemilihan track)
+ ROTATIONAL DELAY (pemilihan record)
+ TRANSFER TIME

*Seek Time
Adalah waktu yang dibutuhkan untuk menggerakkan read / write head pada disk ke posisi silinder yang tepat.

*Head Activational Time
Adalah waktu yang dibutuhkan untuk menggerakkan read / write head pada disk ke posisi track yang tepat.

*Rotational Delay (Lateney)
Adalah waktu yang dibutuhkan untuk perputaran piringan sampai posisi record yang tepat.

*Transfer Time
Adalah waktu yang menunjukkan kecepatan perputaran dan banyaknya data yang ditransfer.

Fixed - Head Disk Access
Disk yang mempunyai sebuah read / write head untuk setiap track pada setiap permukaan penyimpanan, yang mekanisme pengaksesannya tidak dapat dipindahkan dari cylinder ke cylinder.

ACCESS TIME = HEAD-ACTIVATION TIME + ROTATIONAL DELAY + TRANSFER TIME

Banyaknya read / write head menyebabkan harga dari fixed-head disk drive lebih mahal dari movable-head disk drive. Disk yang menggunakan fixed-head disk drive mempunyai kapasitas dansdensity yang lebih kecil dibandingkan dengan disk yang menggunakan movable-head disk drive. 

Organisasi Berkas dan Metoda Akses pada Magnetic Disk
Untuk membentuk suatu berkas di dalam magnetic disk bisa dilakukan secara sequential, index-sequential ataupun direct. Sedangkan untuk mengambil suatu data dari berkas yang disimpan dalam disk, bisa dilakukan secara langsung dengan menggunakan direct access method atau dengan sequential access method (secara sequential).

Komponen Pada Magnetic Disk
Magnetic disk terdiri atas beberapa komponen penting. Komponen utamanya adalah pelat (platter) yang berfungsi sebagai penyimpan data. Pelat ini adalah suatu cakram padat yang berbentuk bulat datar, kedua sisi permukaannya dilapisi dengan material khusus sehingga memiliki pola-pola magnetis. 

*Spindle
Hard disk terdiri dari spindle yang menjadi pusat putaran dari keping-keping cakram magnetik penyimpan data. Spindle ini berputar dengan cepat, oleh karena itu harus menggunakan high quality bearing. Dahulu hard disk menggunakan ball bearing namun kini hard disk sudah menggunakan fluid bearing. Dengan fluid bearing maka gaya friksi dan tingkat kebisingan dapat diminimalisir. Spindle ini yang menentukan putaran hard disk. Semakin cepat putaran rpm hard disk maka semakin cepat transfer datanya.

*Cakram Magnetik (Magnetic Disk)
Pada cakram magnetik inilah dilakukan penyimpanan data pada hard disk. Cakram magnetik berbentuk plat tipis dengan bentuk seperti CD-R. Dalam hard disk terdapat beberapa cakram magnetik. Hard disk yang pertama kali dibuat, terdiri dari 50 piringan cakram magnetik dengan ukuran 0.6 meter dan berputar dengan kecepatan 1.200 rpm. Saat ini kecepatan putaran hard disk sudah mencapai 10.000rpm dengan transfer data mencapai 3.0 Gbps.

*Read-write Head
Read-write Head adalah pengambil data dari cakram magnetik. Head ini melayang dengan jarak yang tipis dengan cakram magnetik. Dahulu head bersentuhan langsung dengan cakram magnetik sehingga mengakibatkan keausan pada permukaan karena gesekan. Kini antara head dan cakram magnetik sudah diberi jarak sehingga umur hard disk lebih lama. Read-write head terbuat bahan yang terus mengalami perkembangan, mulai dari Ferrite head, MIG (Metal-In-Gap) head, TF (Thin Film) Head, (Anisotropic) Magnetoresistive (MR/AMR) Heads, GMR (Giant Magnetoresistive) Heads dan sekarang yang digunakan adalah CMR (Colossal Magnetoresistive) Heads.

*Enclosure
Enclosure adalah lapisan luar pembungkus hard disk. Enclosure berfungsi melindungi semua bagian dalam hard disk agar tidak terkena debu, kelembaban dan hal lain yang dapat mengakibatkan kerusakan data. Dalam enclosure terdapat breath filter yang membuat hard disk tidak kedap udara, hal ini bertujuan untuk membuang panas yang ada didalam hard disk karena proses putaran spindle dan pembacaan Read-write head.

*Interfacing Modul
Interfacing modul berupa seperangkat rangkaian elektronik yang mengendalikan kerja bagian dalam hard disk, memproses data dari head dan menghasilkan data yang siap dibaca oleh proses selanjutnya. Interfacing modul yang dahulu banyak dipakai adalah sistem IDE (Integrated Drive Electronics) dengan sistem ATA yang mempunyai koneksi 40 pin. Teknologi terbaru dari

interfacing module adalah teknologi Serial ATA (SATA). Dengan SATA maka satu hard disk ditangani oleh satu bus tersendiri didalam chipset, sehingga penanganannya menjadi lebih cepat dan efisien. hard disk SATA sekarang perlahan sudah menggantikan hard disk ATA yang makin lama mulai hilang dari pasaran. 

Teknologi Pada Magnetic Disk

RAID (Redudancy Array of Independent Disk)
RAID adalah teknologi penggabungan beberapa hard disk yang oleh sebuah operating system komputer dianggap menjadi satu hard disk. Konsep ini pertama kali didefinisikan oleh David A. Patterson, Garth A. Gibson dan Randy Katz dari University of California, Berkeley pada tahun 1987. Level RAID dibagi menjadi 8 level yang berbeda, yaitu level 0, level 1, level 2, level 3, level 4, level 5, level 6, level 0+1 dan 1+0. Setiap level tersebut memiliki kelebihan dan kekurangannya masing-masing. Keuntungan dari penggunaan teknologi RAID adalah peningkatan kecepatan akses pada hard disk. Dengan menggantikan hard disk besar dengan beberapa hard disk kecil maka dimungkinkan pembacaan data secara paralel pada masing-masing hard disk. RAID diibatatkan sebuah database hard disk yang menghasilkan data secara paralel sesuai dengan indeks pengalamatan hard disk.

S.M.A.R.T (Self Monitoring, Analysis and Reporting Technology)
SMART adalah teknologi monitoring kinerja hard disk. Dengan SMART maka hard disk mampu mendeteksi adanya error dan melaporkan error ini kepada sistem. SMART paertama kali dipelopori oleh COMPAQ, namun kini hampir semua menggunakan teknologi SMART. Keuntungan penggunaan SMART adalah adanya peringatan dini terhadap ketidak normalan yang terjadi pada hard disk sehingga pengguna dapat melakukan tindakan preventif seperti memback-up data. 

Kelebihan dan Kekurangan Penggunaan Magnetic Disk

Media magnetik seperti disket floppy dan hard disk mempunya sejumlah keunggulan dibanding dengan media lainnya. Penyimpanan data pada media ini bersifat nonvolatile, artinya data yang telah disimpan tidak akan hilang ketika

Komputer dimatikan. Data pada media ini dapat dibaca, dihapus dan ditulis ulang. Keunggulan lainnya ialah, media ini mudah digunakan. Selain memiliki keunggulan, media ini juga mempunyai kelemahan.

Musuh utama dari media magnetik seperti disket floppy dan hard disk ialah jamur dan karat. Karena jamur dan karat ini, maka daya tahan atau umur media ini menjadi pendek. Jika dipakai secara kontinu atau terus menerus sekitar 8 jam per hari, maka umur suatu disket floppy paling lama 1 (satu) tahun, dan umur hard disk paling lama 3 (tiga) tahun. Kelemahan lain dari media magnetik ini ialah bentuknya yang bergaris-garis (track, sector), sehingga kecepatan dan kapasitas simpannya termasuk rendah jika dibanding dengan media optik. 

Referensi

LihatTutupKomentar